91. Halvorsen, T. M., Schroeder, K. A., Jones, A. M., Hammarlöf, D., Low, D. A., Koskiniemi, S. and C. S. Hayes (2024) Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. PLOS Genetics 20:e1011494
https://pubmed.ncbi.nlm.nih.gov/39591464/
90. Jensen, S. J., Cuthbert, B. J., Garza-Sánchez, F., Helou, C. C., de Miranda, R., Goulding, C. W. and C. S. Hayes (2024) Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein. Nature Communications 15:8804
https://pubmed.ncbi.nlm.nih.gov/39394186/
89. Jensen, S. J., Ruhe, Z. C., Williams, A. F., Nhan, D. Q., Garza-Sánchez, F., Low, D. A., C. S. Hayes (2023) Paradoxical activation of a type VI secretion system phospholipase effector by its cognate immunity protein. Journal of Bacteriology 205:e00113-23
https://pubmed.ncbi.nlm.nih.gov/37212679/
88. Wang, Q., Kim, H., Halvorsen, T. M., S. Chen, Hayes, C. S. and C. R. Buie (2023) Leveraging microfluidic dielectrophoresis to distinguish compositional variations of lipopolysaccharide in E. coli. Frontiers in Bioengineering and Biotechnology 11:991784
https://pubmed.ncbi.nlm.nih.gov/36873367/
87. Bartelli, N. L., Passanisi, V. J., Michalska, K., Song, K., Nhan, D. Q., Zhou, H., Cuthbert, B. J., Stols, L. M., Eschenfeldt, W. H., Wilson, N. G., Basra, J. S., Cortes, R., Noorsher, Z., Gabraiel, Y., Poonen-Honig, I., Seacord, E. C., Goulding, C. W., Low, D. A., Joachimiak, A., Dahlquist, F. W. and C. S. Hayes (2022) Proteolytic processing induces a conformational switch required for antibacterial toxin delivery. Nature Communications 13:5078
https://pubmed.ncbi.nlm.nih.gov/36038560/
86. Cuthbert, B. J., Hayes, C. S. and C. W. Goulding (2022) Functional and structural diversity of bacterial contact-dependent growth inhibition (CDI) effectors. Frontiers in Molecular Biosciences 9:866854
https://pubmed.ncbi.nlm.nih.gov/35558562/
85. Alexander, L. T., Lepore, R., Kryshtafovych, A., Adamopoulos, A., Alahuhta, M., Arvin, A. M., Bomble, Y. J., Bottcher, B., Breyton, C., Chinnam, N. B., Chiu, W., Fidelis, K., Grinter, R., Gupta, G. D., Hartmann, M. D., Hayes, C. S., Heidebrecht, T., Joachimiak, A., Kim, Y., Linares, R., Lovering, A. L., Lunin, V. V., Lupas, A. N., Makbul, C., Michalska, K., Moult, J., Mukherjee, P. K., Nutt, W., Oliver, S. L., Perrakis, A., Stols, L., Tainer, J. A., Topf, M., Tsutakawa, S. E., Valdivia-Delgado, M. and T. Schwede (2021) Target highlights in CASP14: analysis of models by structure providers. Proteins 89:1647-1672
https://pubmed.ncbi.nlm.nih.gov/34561912/
84. Halvorsen, T. M, Garza-Sánchez, F., Ruhe, Z. C., Bartelli, N. L., Chan, N. A., Nguyen, J. Y., Low, D. A. and C. S. Hayes (2021) Lipidation of class IV CdiA effector proteins promotes target-cell recognition during contact-dependent growth inhibition (CDI). mBio 12:e0253021
https://pubmed.ncbi.nlm.nih.gov/34634941/
83. Waneskog, M., Halvorsen, T., Filek, K., Xu, F., Hammarlof, D. L, Hayes, C. S., Braaten, B., Low, D. A., Poole, S. J. and S. Koskiniemi (2021) E. coli EC93 deploys two plasmid-encoded class I CDI systems for antagonistic bacterial interactions. Microbial Genomics 7:000534
https://pubmed.ncbi.nlm.nih.gov/33646095/
82. Jones, A. M., Virtanen, P., Hammarlof, D., Allen, W. J., Collinson, I., Hayes C. S., Low, D. A. and S. Koskiniemi (2021) Genetic evidence for SecY translocon-mediated import of two contact-dependent growth inhibition (CDI) toxins. mBio 12:e03367-20
https://pubmed.ncbi.nlm.nih.gov/33531386/
81. Donato, S. L., Beck, C. M., Garza-Sánchez, F., Jensen, S. J., Ruhe, Z. C., Cunningham, D. A., Singleton, I., Low, D. A. and C. S. Hayes (2020) The β-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion. Proceedings of the National Academy of Sciences U.S. A. 117:33540-33548
https://pubmed.ncbi.nlm.nih.gov/33323487/
80. Ruhe, Z. C., Low, D. A. and C. S. Hayes (2020) Polymorphic toxins and their immunity proteins: diversity, evolution, and mechanisms of delivery. Annual Review of Microbiology 74:497-520
https://pubmed.ncbi.nlm.nih.gov/32680451/
79. Lepore, R., Kryshtafovych, A., Alahuhta, M., Veraszto, H. A., Bomble, Y. J., Bufton, J. C., Bullock, A. N., Caba, C., Cao, H., Davies, O. R., Desfosses, A., Dunne, M., Fidelis, K., Goulding, C. W., Gurusaran, M., Gutsche, I., Harding, C. J., Hartmann, M. D., Hayes, C. S., Joachimiak, A., Leiman, P. G., Loppnau, P., Lovering, A. L., Lunin, V. V., Michalska, K., Mir-Sanchis, I., Mitra, A., Moult, J., Phillips, G. N., Pinkas, D. M., Rice, P. A., Tong, Y., Topf, M., Walton, J. D. and T. Schwede (2019) Target highlights in CASP13: Experimental target structures through the eyes of their authors. Proteins 87:1037-1057
https://pubmed.ncbi.nlm.nih.gov/31442339/
78. Gucinski, G. C, Michalska, K., Garza-Sánchez, F., Eschenfeldt, W. H., Stols, L., Nguyen, J. Y., Goulding, C. W., Joachimiak, A. and C. S. Hayes (2019) Convergent evolution of the barnase/EndoU/colicin/RelE (BECR) fold in antibacterial tRNase toxins. Structure 27:1660-1674
https://pubmed.ncbi.nlm.nih.gov/31515004/
77. Bartelli, N. L., Sun, S., Gucinski, G. C., Zhou, H., Song, K., Hayes, C. S. and F. W. Dahlquist (2019) The cytoplasm-entry domain of antibacterial CdiA is a dynamic α-helical bundle with disulfide-dependent structural features. Journal of Molecular Biology 431:3203-3216
https://pubmed.ncbi.nlm.nih.gov/31181288/
76. Ruhe, Z. C., Subramanian, P., Song, K., Nguyen, J. Y., Stevens, T. A., Low, D. A., Jenson, G. J., and C. S. Hayes (2018) Programmed secretion arrest and receptor-triggered toxin export during antibacterial contact-dependent growth inhibition. Cell 175:921-933
https://pubmed.ncbi.nlm.nih.gov/30388452/
75. Michalska, K., Nhan, D. Q., Willett, J. L. E., Stols, L., Eschenfeld, W. H., Jones, A. M., Nguyen, J. Y., Koskiniemi, S., Low, D. A., Goulding, C. W., Joachimiak, A., and C. S. Hayes (2018) Functional plasticity of antibacterial EndoU toxins. Molecular Microbiology 109:509-527
https://pubmed.ncbi.nlm.nih.gov/29923643/
74. Xiaoli, L., Figler, M., Goswami, K., Hayes, C. S., and E. G. Dudley (2018) Nonpathogenic Escherichia coli enhance Stx2a production of E. coli O157:H7 through both bamA-dependent and independent mechanisms. Frontiers in Microbiology 9:1325
https://pubmed.ncbi.nlm.nih.gov/29973923/
73. Kryshtafovych, A., Albrecht, R., Basle, A., Caputo, A. T., Chao, K. L., Diskin, R., Fidelis, K., Fredslund, F., Gilbert, H. J., Goulding, C. W., Hartmann, M. D., Hayes, C. S., Herzberg, O., Hill, J. C., Joachimiak, A., Kohring, G-W., Koning, R. I., Leggio, L. L., Mangiagalli, M., Michalska, K., Moult, J., Nardini, M., Nardonne, V., Ndeh, D., Nguyen, T. H., Pintacuda, G., Postel, S., van Raaij, M. J., Roversi, P., Shimon, A., Sundberg, E. J., Targs, K., Zitzmann, N., and T. Schwede (2018) Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). Proteins 86:27-50
https://pubmed.ncbi.nlm.nih.gov/28960539/
72. Michalska, K., Gucinski, G. C., Garza-Sánchez, F., Johnson, P. M., Stols, L., Eschenfeldt, W. H., Babnigg, G., Low, D. A., Goulding, C. W., Joachimiak, A., and C. S. Hayes (2017) Structure of a nove antibacterial toxin that exploits elongation factor Tu to cleave specific tRNAs. Nucleic Acids Research 45:10306-10320
https://pubmed.ncbi.nlm.nih.gov/28973472/
71. Vassallo, C. N., Cao, P., Conklin, A., Finkelstein, H., Hayes, C. S. and D. Wall (2017) Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife 6:e29397
https://pubmed.ncbi.nlm.nih.gov/28820387/
70. Benoni, R., Beck, C. M., Garza-Sánchez, F., Betatti, S., Mozzarelli, A., Hayes C. S., and B. Campanini (2017) Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase. Scientific Reports 7:8817
https://pubmed.ncbi.nlm.nih.gov/28821763/
69. Batot, G., Michalska, K., Ekberg, G., Irimpan, E. M., Joachimiak, G., Jedrzejczak, R., Babnigg, G., Hayes C. S., Joachimiak, A., and C. W. Goulding (2017) The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic Acids Research 45:5013-5025
https://pubmed.ncbi.nlm.nih.gov/28398546/
68. Benoni, R., De Bei, O., Paredi, G., Hayes, C. S., Franko, N., Mozzarelli, A., Bettati, S., and B. Campanini (2017) Protein-protein interaction in cysteine biosynthesis: modulation of E. coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Letters 591:1212-1224
https://pubmed.ncbi.nlm.nih.gov/28337759/
67. Jones, A. M., Low, D. A. and C. S. Hayes (2017) Can’t you hear me knocking: contact-dependent competition and cooperation in bacteria. Emerging Topics in Life Sciences 1:75-83
https://pubmed.ncbi.nlm.nih.gov/29085916/
66. Ruhe, Z. C., Nguyen, J. Y., Xiong, J., Koskiniemi, S, Beck, C. M., Perkins, B. R., Low, D. A. and C. S. Hayes (2017) Toxic CdiA effectors recognize target bacteria using modular receptor-binding domains. mBio 8:e00290-17
https://pubmed.ncbi.nlm.nih.gov/28351921/
65. Jones, A. M., Garza-Sánchez, F., So, J., Hayes, C. S. and D. A. Low (2017) Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proceedings of the National Academy of Sciences U.S.A. 114:E1951-E1957
https://pubmed.ncbi.nlm.nih.gov/28223500/
64. Beck, C. M., Willett, J. L. E., Cunningham, D. A., Kim, J. J., Low, D. A. and C. S. Hayes (2016) CdiA effectors from uropathogenic Escherichia coli use heterotrimeric osmoporins as receptors to recognize target bacteria. PLOS Pathogens 12:e1005925
https://pubmed.ncbi.nlm.nih.gov/27723824/
63. Johnson, P. M., Gucinski, G. C., Garza-Sánchez, F., Wong, T., Hung, L.-W., Hayes, C. S. and C. W. Goulding (2016) Functional diversity of cytotoxic tRNase/immunity protein complexes from Burkholderia pseudomallei. Journal of Biological Chemistry 291:19387-19400
https://pubmed.ncbi.nlm.nih.gov/27445337/
62. Johnson, P. M., Beck, C. M., Morse, R. P., Garza-Sánchez, F., Low, D. A., Hayes, C. S. and C. W. Goulding (2016) Unraveling the essential role of CysK in CDI toxin activation. Proceedings of the National Academy of Sciences U.S.A. 113:9792-9797
https://pubmed.ncbi.nlm.nih.gov/27531961/
61. Ruhe, Z. C., Nguyen, J. Y., Chen, A. J., Leung, N. Y., Hayes, C. S. and D. A. Low (2016) CDI systems are stably maintained by a cell-contact mediated surveillance mechanism. PLOS Genetics 12:e1006145
https://pubmed.ncbi.nlm.nih.gov/27355474/
60. Morse, R. P., Willett, J. L. E., Johnson, P. M., Zhang, M., Credali, A., Iniguez, A., Nowick, J. S., Hayes, C. S. and C. W. Goulding (2015) Diversification of β-augmentation interactions between CDI toxin/immunity proteins. Journal of Molecular Biology 427:3766-3784
https://pubmed.ncbi.nlm.nih.gov/26449640/
59. Willett, J. L. E., Ruhe, Z. C., Goulding, C. W., Low, D. A. and C. S. Hayes (2015) Contact-dependent growth inhibition (CDI) and the CdiB/CdiA family of two-partner secretion proteins. Journal of Molecular Biology 427:3754-3765
https://pubmed.ncbi.nlm.nih.gov/26388411/
58. Ruhe, Z. C., Hayes, C. S. and D. A. Low (2015) Measuring cell-cell binding using flow-cytometry. Methods in Molecular Biology 1329:127-136
https://pubmed.ncbi.nlm.nih.gov/26427680/
57. Ruhe, Z. C., Townsley, L., Wallace, A. B., King, A., Van der Woude, M. W., Low, D. A., Yildiz, F. H., and C. S. Hayes (2015) CdiA promotes receptor-independent intercellular adhesion. Molecular Microbiology 198:175-192
https://pubmed.ncbi.nlm.nih.gov/26135212/
56. Willett, J. L. E., Gucinski, G. C., Fatherree, J., Low, D. A., and C. S. Hayes (2015) Contact-dependent growth inhibition (CDI) toxins exploit multiple independent cell-entry pathways. Proceedings of the National Academy of Sciences U.S.A. 112:11341-11346
https://pubmed.ncbi.nlm.nih.gov/26305955/
55. Janssen, B. D., Garza-Sánchez, F. and C. S. Hayes (2015) YoeB toxin is activated during thermal stress. MicrobiologyOpen 4:682-689
https://pubmed.ncbi.nlm.nih.gov/26147890/
54. Campanini, B., Benoni, R., Bettati, S., Beck, C. M., Hayes, C. S., and A. Mozzarelli (2015) Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein. Biochimica et Biophysica Acta 1854:1184-1193
https://pubmed.ncbi.nlm.nih.gov/25731080/
53. Tan, K., Johnson, P. M., Stols, L., Boubion, B., Eschenfeldt, W., Babnigg, G., Hayes, C. S., Joachimiak, A., and C. W. Goulding (2015) The structure of a contact-dependent growth inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallographica F71:702-709
https://pubmed.ncbi.nlm.nih.gov/26057799/
52. Koskiniemi, S., Garza-Sánchez, F., Edman, N., Chaudhuri, S., Poole, S. J., Manoil, C., Hayes, C. S. and D. A. Low (2015) Genetic analysis of the CDI pathway from Burkholderia pseudomallei 1026b. PLoS ONE 10:e0120265
https://pubmed.ncbi.nlm.nih.gov/25786241/
51. Ruhe, Z. C., Nguyen, J. Y., Beck, C. M., Low, D. A. and C. S. Hayes (2014) The proton-motive force is required for translocation of CDI toxins across the inner membrane of target bacteria. Molecular Microbiology 94:466-481
https://pubmed.ncbi.nlm.nih.gov/25174572/
50. Beck, C. M., Diner, E. J., Kim, J. J., Low, D. A. and C. S. Hayes (2014) The F pilus mediates a novel pathway of CDI toxin import. Molecular Microbiology 93:276-290
https://pubmed.ncbi.nlm.nih.gov/24889811/
49. Whitney, J. C., Beck, C. M., Goo, Y. A., Russell, A. B., Harding, B., De Leon, J. A., Cunningham, D. A., Tran, B. Q., Low, D. A., Goodlett, D. R., Hayes, C. S. and J. D. Mougous (2014) Genetically distinct pathways guide effector export by the type VI secretion system. Molecular Microbiology 92:529-542
https://pubmed.ncbi.nlm.nih.gov/24589350/
48. Beck, C. M., Morse, R. P., Cunningham, D. A., Iniquez, I., Low, D. A., Goulding, C. W. and C. S. Hayes (2014) CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Structure 22:707-718
https://pubmed.ncbi.nlm.nih.gov/24657090/
47. Koskiniemi, S., Garza-Sánchez, F., Sandegren, L., Webb, J. S., Braaten, B., Poole, S. J., Andersson, D. I., Hayes, C. S. and D. A. Low (2014) Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium. PLoS Genetics 10:e1004255
https://pubmed.ncbi.nlm.nih.gov/24675981/
46. Hayes, C. S., Koskiniemi, S., Ruhe, Z. C., Poole, S. J. and D. A. Low (2014) Mechanisms and biological roles of contact-dependent growth inhibition (CDI) systems. Cold Spring Harbor Perspectives in Medicine 4:a010025
https://pubmed.ncbi.nlm.nih.gov/24492845/
45. Janssen, B. D., Garza-Sánchez, F. and C. S. Hayes (2013) A-site mRNA cleavage is not required for tmRNA-mediated ssrA-peptide tagging. PLoS ONE 8:e81319
https://pubmed.ncbi.nlm.nih.gov/24260569/
44. Ruhe, Z. C., Wallace, A. B., Low, D. A. and C. S. Hayes (2013) Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. mBio 4:e00480-13
https://pubmed.ncbi.nlm.nih.gov/23882017/
43. Lim, Y. W., Schmieder, R., Haynes, M., Furlan, M., Matthews, T. D., Whiteson, K., Poole, S. J., Hayes,C. S., Low, D. A., Conrad, D., Edwards, R. and F. Rohwer (2013) Mechanistic model of Rothia mucilaginosa adaptations towards persistence in CF lung based on a genome reconstructed from metagenomic data. PLoS ONE 8:e64285
https://pubmed.ncbi.nlm.nih.gov/23737977/
42. Ruhe, Z. C., Low, D. A. and C. S. Hayes (2013) Bacterial contact-dependent growth inhibition (CDI). Trends in Microbiology 21:230-237
https://pubmed.ncbi.nlm.nih.gov/23473845/
41. Koskiniemi, S., Lamoureux, J. G., Nikolakakis, K. C., t’Kint de Roodenbeke, C., Kaplan, M. D., Low, D. A. and C. S. Hayes (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proceedings of the National Academy of Sciences U.S.A. 110:7032-7037
https://pubmed.ncbi.nlm.nih.gov/23572593/
40. Webb, J. S., Nikolakakis, K. C., Willett, J. L. E., Aoki, S. K., Hayes, C. S. and D. A. Low (2013) Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition (CDI). PLoS ONE 8:e57609
https://pubmed.ncbi.nlm.nih.gov/23469034/
39. Morse, R. P., Nikolakakis, K. C., Willett, J. L. E., Gerrick, E., Low, D. A., Hayes, C. S. and C. W. Goulding (2012) Structural basis for toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proceedings of the National Academy of Sciences U.S.A. 109:21480-21485
https://pubmed.ncbi.nlm.nih.gov/23236156/
38. Charkowski, A., Blanco, C., Condemine, G., Expert, D., Franza, T., Hayes, C., Hugouvieux-Cotte-Pattat, N., Lopez-Solanilla, E., Low, D., Moleleki, L., Pirhonen, M., Pitman, A., Perna, N., Reverchon, S., Rodriquez-Palenzueala, P., San Francisco, M., Toth, I., Tsuyuma, S., van der Walls, J., van der Wolf, J., Van Gijsegem, F., Yang, C.-H., Yedidia, I. (2012) The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annual Review of Phytopathology 50:425-449
https://pubmed.ncbi.nlm.nih.gov/22702350/
37. Schaub, R. E., Poole, S. J., Garza-Sánchez, F., Benbow, S. and C. S. Hayes (2012) Proteobacterial ArfA peptides are synthesized from non-stop messenger RNAs. Journal of Biological Chemistry 287:29765-29775
https://pubmed.ncbi.nlm.nih.gov/22791716/
36. Janssen, B. D., Diner, E. J. and C. S. Hayes (2012) Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods in Molecular Biology 905:291-309
https://pubmed.ncbi.nlm.nih.gov/22736012/
35. Nikolakakis, K., Amber, S., Diner, E. J., Aoki, S. K., Poole, S. J., Tuanyok, A., Keim, P., Peacock, S., Hayes, C. S. and D. A. Low (2012) The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Molecular Microbiology 84:516-529
https://pubmed.ncbi.nlm.nih.gov/22435733/
34. Diner, E. J., Beck, C. M., Webb, J. S., Low, D. A. and C. S. Hayes (2012) Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes and Development 26:515-525
https://pubmed.ncbi.nlm.nih.gov/22333533/
33. Janssen, B. D., and C. S. Hayes (2012) The tmRNA ribosome-rescue system. Advances in Protein Chemistry and Structural Biology 86:151-191
https://pubmed.ncbi.nlm.nih.gov/22243584/
32. Holberger, L. E., Garza-Sánchez, F., Lamoureux, J., Low, D. A., and C. S. Hayes (2012) A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Letters 586:132-136
https://pubmed.ncbi.nlm.nih.gov/22200572/
31. Seidman, J. S., Janssen, B. D., and C. S. Hayes (2011) Alternative fates of paused ribosomes during translation termination. Journal of Biological Chemistry 286:31105-31112
https://pubmed.ncbi.nlm.nih.gov/21757758/
30. Poole, S. J., Diner, E. J., Aoki, S. K., t’Kint de Roodenbeke, Braaten, B. A., Low, D. A., and C. S. Hayes (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genetics 7:e1002217
https://pubmed.ncbi.nlm.nih.gov/21829394/
29. Diner, E. J., Garza-Sánchez, F., and C. S. Hayes (2011) Genome engineering using targeted oligonucleotide libraries and functional selection. Methods in Molecular Biology 765:71-82
https://pubmed.ncbi.nlm.nih.gov/21815087/
28. Aoki, S. K., Poole, S. J., Hayes, C. S., and D. A. Low (2011) Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition. Virulence 2:356-359
https://pubmed.ncbi.nlm.nih.gov/21705856/
27. Garza-Sánchez, F., Schaub, R. E., Janssen, B. D., and C. S. Hayes (2011) tmRNA regulates synthesis of the ArfA ribosome rescue factor. Molecular Microbiology 80:1204-1219
https://pubmed.ncbi.nlm.nih.gov/21435036/
26. Schaub, R. E., and C. S. Hayes (2011) Deletion of the RluD pseudouridine synthase promotes ssrA peptide tagging of ribosomal protein S7. Molecular Microbiology 79:331-341
https://pubmed.ncbi.nlm.nih.gov/21219455/
25. Ruhe, Z. C., and C. S. Hayes (2010) The N-terminus of GalE induces tmRNA activity in Escherichia coli. PLoS ONE 5:e15207
https://pubmed.ncbi.nlm.nih.gov/21151867/
24. Aoki, S. K., Diner, E. J., t'Kint de Roodenbeke, C., Burgess, B. R., Poole, S. J., Braaten, B. A., Jones, A. M., Webb, J. S., Hayes, C. S., Cotter, P. A., and D. A. Low (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468:439-442
https://pubmed.ncbi.nlm.nih.gov/21085179/
23. Hayes, C. S., Aoki, S. K., and D. A. Low (2010) Bacterial contact-dependent delivery systems. Annual Review of Genetics 44:71-90
https://pubmed.ncbi.nlm.nih.gov/21047256/
22. Shoji, S., Janssen, B. D., Hayes, C. S., and K. Fredrick (2010) Translation factor LepA contributes to tellurite resistance in Escherichia coli but plays no apparent role in the fidelity of protein synthesis. Biochimie 92:157-163
https://pubmed.ncbi.nlm.nih.gov/19925844/
21. Hayes, C. S., and K. C. Keiler (2010) Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Letters 584:413-419
20. Hayes, C. S., and D. A. Low (2009) Signals of growth regulation in bacteria. Current Opinion in Microbiology 12:667-673
https://pubmed.ncbi.nlm.nih.gov/19854099/
19. Holberger, L. E. and C. S. Hayes (2009) Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. Journal of Biological Chemistry 284:32188-32200
https://pubmed.ncbi.nlm.nih.gov/19776006/
18. Janssen, B. D. and C. S. Hayes (2009) Kinetics of paused ribosome recycling in Escherichia coli. Journal of Molecular Biology 394:251-267
https://pubmed.ncbi.nlm.nih.gov/19761774/
17. Garza-Sánchez, F., Shoji, S., Fredrick, K., and C. S. Hayes (2009) RNase II is important for A-site mRNA cleavage during ribosome pausing. Molecular Microbiology 73:882-897
https://pubmed.ncbi.nlm.nih.gov/19627501/
16. Diner, E. J. and C. S. Hayes (2009) Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. Journal of Molecular Biology 386:300-315
https://pubmed.ncbi.nlm.nih.gov/19150357/
15. Garza-Sánchez, F., Gin, J. G., and C. S. Hayes (2008) Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli. Journal of Molecular Biology 378:505-519
https://pubmed.ncbi.nlm.nih.gov/18377929/
14. Garza-Sánchez, F., Janssen, B. D., and C. S. Hayes (2006) Prolyl-tRNAPro in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. Journal of Biological Chemistry 281:34258-34268
https://pubmed.ncbi.nlm.nih.gov/16968693/
13. Frenkiel-Krispin, D., Sack, R., Englander, J., Shimoni, E., Eisenstein, M., Bullitt, E., Horowitz-Scherer, R., Hayes, C. S., Setlow, P., Minsky, A., and S. G. Wolf (2004) Structure of the DNA-SspC complex: implication for DNA packaging, protection and repair in bacterial spores. Journal of Bacteriology 186:3525-3530
https://pubmed.ncbi.nlm.nih.gov/15150240/
12. Hayes, C. S., and R. T. Sauer (2003) Cleavage of the A-site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Molecular Cell 12:903-911
https://pubmed.ncbi.nlm.nih.gov/14580341/
11. Hayes, C. S., and R. T. Sauer (2003) Toxin-antitoxin pairs in bacteria: killers or stress regulators? Cell 112:2-4
https://pubmed.ncbi.nlm.nih.gov/12526786/
10. Sohail, A., Hayes, C. S., Divvela, P., Setlow, P., and A. S. Bhagwat (2002) Protection of DNA by α/β-type small acid-soluble proteins from Bacillus subtilis spores against cytosine deamination. Biochemistry 41:11325-11330
https://pubmed.ncbi.nlm.nih.gov/12234173/
9. Hayes, C. S., Bose, B., and R. T. Sauer (2002) Proline residues at the C-terminus of nascent chains induce SsrA-tagging during translation termination. Journal of Biological Chemistry 277:33825-33832
https://pubmed.ncbi.nlm.nih.gov/12105207/
8. Hayes, C. S., Bose, B., and R. T. Sauer (2002) Stop codons preceded by rare arginine codons are efficient determinants of SsrA-tagging in Escherichia coli. Proceedings of the National Academy of Sciences U. S. A. 99:3440-3445
https://pubmed.ncbi.nlm.nih.gov/11891313/
7. Hayes, C. S., and P. Setlow (2001) An α/β-type small, acid-soluble spore protein which has very high affinity for DNA prevents outgrowth of Bacillus subtilis spores. Journal of Bacteriology 183:2662-2666
https://pubmed.ncbi.nlm.nih.gov/11274127/
6. Hayes, C. S., Alarcon-Hernandez, E., and P. Setlow (2001) N-terminal amino acid residues mediate protein-protein interactions between DNA-bound α/β-type small, acid-soluble spore proteins from Bacillus species. Journal of Biological Chemistry 276:2267-2275
https://pubmed.ncbi.nlm.nih.gov/11044450/
5. Hayes, C. S., Peng, Z.-y., and P. Setlow (2000) Equilibrium and kinetic binding interactions between DNA and a group of novel, non-specific DNA binding proteins from spores of Bacillus and Clostridium species. Journal of Biological Chemistry 275:35040-35050
https://pubmed.ncbi.nlm.nih.gov/10954716/
4. Hayes, C. S., and P. Setlow (1998) Identification of protein-protein contacts between α/β-type small, acid-soluble spore proteins of Bacillus species bound to DNA. Journal of Biological Chemistry 273:17326-17332
https://pubmed.ncbi.nlm.nih.gov/9651315/
3. Hayes, C. S., Illades-Aguiar, B., Casillas-Martinez, L., and P. Setlow (1998) In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species. Journal of Bacteriology 180:2694-2700
https://pubmed.ncbi.nlm.nih.gov/9573155/
2. Hayes, C. S., and P. Setlow (1997) Analysis of deamidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. Journal of Bacteriology 178:6020-6027
https://pubmed.ncbi.nlm.nih.gov/9324247/
1. Hayes, C. S., Ault, K. A., and C. P. H. Vary (1995) A combined RT-PCR/Southern hybridization strategy and its application to homeotic mRNA expression in circulating CD34+ pluripotent stem cells, p.106-120. In Reverse Transcriptase PCR. Larrick, J.W. & Siebert, P.D. (ed.). Ellis Horwood, London